skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yuxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On 24 April 2023, an ICME reached Earth's orbit. The solar wind density dropped to 0.3 amu/cc while the IMF strength was about 25 nT. As a result, the solar wind flow transitions to a sub‐Alfvénic state with an Alfvén Mach number of 0.4. We carry out global magnetohydrodynamic simulations to investigate the responses of Earth's magnetosphere to the ICME ejecta. The results show the formation of Alfvén wings as the solar wind becomes sub‐Alfvénic. Furthermore, the sub‐Alfvénic period was characterized by the dominance of the IMF component, causing the Alfvén wings to extend toward the dawn and dusk flanks. We investigate the global magnetospheric convection of this sub‐ Alfvénic case and find that the overall convection is mediated by the Alfvén wings, while the magnetic field convection in inner magnetosphere is similar to the super‐Alfvénic case. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Abstract Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATSRUS), our state-of-the-art extended magnetohydrodynamic code, is the most used and one of the most resource-consuming models in the Space Weather Modeling Framework. It has always been our objective to improve its efficiency and speed with emerging techniques, such as GPU acceleration. To utilize the GPU nodes on modern supercomputers, we port BATSRUS to GPUs with the OpenACC API. Porting the code to a single GPU requires rewriting and optimizing the most used functionalities of the original code into a new solver, which accounts for around 1% of the entire program in length. To port it to multiple GPUs, we implement a new message-passing algorithm to support its unique block-adaptive grid feature. We conduct weak scaling tests on as many as 256 GPUs and find good performance. The program has 50%–60% parallel efficiency on up to 256 GPUs and up to 95% efficiency within a single node (four GPUs). Running large problems on more than one node has reduced efficiency due to hardware bottlenecks. We also demonstrate our ability to run representative magnetospheric simulations on GPUs. The performance for a single A100 GPU is about the same as 270 AMD “Rome” CPU cores (2.1 128-core nodes), and it runs 3.6 times faster than real time. The simulation can run 6.9 times faster than real time on four A100 GPUs. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1–6) and three hopane triterpenes (7–9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54–26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2−), with IC50 values of compounds 2, 4, and 6 ~3.45–14.04 μg/mL and 22.87–53.31 μg/mL towards DPPH and O2−, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens. 
    more » « less
  4. Abstract Mercury possesses a miniature but dynamic magnetosphere driven primarily by the solar wind through magnetic reconnection. A prominent feature of the dayside magnetopause reconnection that has been frequently observed is flux transfer events (FTEs), which are thought to be an important player in driving the global convection at Mercury. Using the BATSRUS Hall magnetohydrodynamics model with coupled planetary interior, we have conducted a series of global simulations to investigate the generation and characteristics of FTEs under different solar wind Alfvénic Mach numbers (MA) and interplanetary magnetic field (IMF) orientations. An automated algorithm was also developed to consistently identify FTEs and extract their key properties from the simulations. In all simulations driven by steady upstream conditions, FTEs are formed quasi‐periodically with recurrence time ranging from 2 to 9 s, and their characteristics vary in time as they evolve and interact with the surrounding plasma and magnetic field. Our statistical analysis of the simulated FTEs reveals that the key properties of FTEs, including spatial size, traveling speed and core field strength, all exhibit notable dependence on the solar windMAand IMF orientation, and the trends identified from the simulations are generally consistent with previous MErcury Surface Space ENvironment, GEochemistry, and Ranging observations. It is also found that FTEs formed in the simulations contribute about 3%–13% of the total open flux created at the dayside magnetopause that participates in the global circulation, suggesting that FTEs indeed play an important role in driving the Dungey cycle at Mercury. 
    more » « less
  5. Abstract The coronal heating problem has been a major challenge in solar physics, and a tremendous amount of effort has been made over the past several decades to solve it. In this paper, we aim at answering how the physical processes behind the Alfvén wave turbulent heating adopted in the Alfvén Wave Solar atmosphere Model (AWSoM) unfold in individual plasma loops in an active region (AR). We perform comprehensive investigations in a statistical manner on the wave dissipation and reflection, temperature distribution, heating scaling laws, and energy balance along the loops, providing in-depth insights into the energy allocation in the lower solar atmosphere. We demonstrate that our 3D global model with a physics-based phenomenological formulation for the Alfvén wave turbulent heating yields a heating rate exponentially decreasing from loop footpoints to top, which had been empirically assumed in the past literature. A detailed differential emission measure (DEM) analysis of the AR is also performed, and the simulation compares favorably with DEM curves obtained from Hinode/Extreme-ultraviolet Imaging Spectrometer observations. This is the first work to examine the detailed AR energetics of our AWSoM model with high numerical resolution and further demonstrates the capabilities of low-frequency Alfvén wave turbulent heating in producing realistic plasma properties and energetics in an AR. 
    more » « less
  6. Fluoroether solvents are promising electrolyte candidates for high-energy-density lithium metal batteries, where high ionic conductivity and oxidative stability are important metrics for design of new systems. Recent experiments have shown that these performance metrics, particularly stability, can be tuned by changing the fraction of ether and fluorine content. However, little is known about how different molecular architectures influence the underlying ion transport mechanisms and conductivity. Here, we use all-atom molecular dynamics simulations to elucidate the ion transport and solvation characteristics of fluoroether chains of varying length, and having different ether segment and fluorine terminal group contents. The design rules that emerge from this effort are that solvent size determines lithium-ion transport kinetics, solvation structure, and solvation energy. In particular, the mechanism for lithium-ion transport is found to shift from ion hopping between solvation sites located in different fluoroether chains in short-chain solvents, to ion–solvent co-diffusion in long-chain solvents, indicating that an optimum exists for molecules of intermediate length, where hopping is possible but solvent diffusion is fast. Consistent with these findings, our experimental measurements reveal a non-monotonic behavior of the effects of solvent size on lithium-ion conductivity, with a maximum occurring for medium-length solvent chains. A key design principle for achieving high ionic conductivity is that a trade-off is required between relying on shorter fluoroether chains having high self-diffusivity, and relying on longer chains that increase the stability of local solvation shells. 
    more » « less
  7. Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important. 
    more » « less
  8. Abstract Using a two‐way coupled magnetohydrodynamics with embedded kinetic physics model, we perform a substorm event simulation to study electron velocity distribution functions (VDFs) evolution associated with Bursty Bulk Flows (BBFs). The substorm was observed by Magnetospheric Multiscale satellite on 16 May 2017. The simulated BBF macroscopic characteristics and electron VDFs agree well with observations. The VDFs from the BBF tail to its dipolarization front (DF) during its earthward propagation are revealed and they show clear energization and heating. The electron pitch angle distributions (PADs) at the DF are also tracked, which show interesting energy dependent features. Lower energy electrons develop a “two‐hump” PAD while the higher energy ones show persist “pancake” distribution. Our study reveals for the first time the evolution of electron VDFs as a BBF moves earthward using a two‐way coupled global and kinetic model, and provides valuable contextual understanding for the interpretation of satellite observations. 
    more » « less